Worksheet 4b.6b - Double Replacement Predictions

•
5. Potassium sulfite is reacted with hydrobromic acid. Overall Equation:
_lonic_Equation:_
Net-Ionic Equation:
6. Potassium sulfide is reacted with nitric acid. Overall Equation:
lonic Equation:
Net-Ionic Equation:
7. Ammonium iodide is mixed with magnesium sulfate. Overall Equation:
- Jonic Equation: -
Net-Ionic Equation:
8. Solid titanium (IV) carbonate is added to hydrochloric acid. Overall Equation:
Jonic Equation:
Net-Ionic Equation:
9. Solid calcium sulfite is mixed with acetic acid. Overall Equation:
lonic Equation:
Net-Ionic Equation:
10. Strontium hydroxide is added to ammonium sulfide. Overall Equation:
lonic Equation:
Net-Ionic Equation:

Worksheet 4b.8 - Mixed Predictions

NAME	

Use the General Cases to predict the products of each reaction. Balance each equation when done. Identify each reaction type in the blank at the right.

General Case:

Synthesis:

$$A + B \rightarrow AB$$

Decomposition:

$$AB \rightarrow A + B$$

Single Replacement:

$$AX + B \rightarrow BX + A$$

Double Replacement:

$$AX + BY \rightarrow BX + AY$$

Combustion:

$$C_xH_y + O_2 \rightarrow CO_2 + H_2O$$

REACTION:

$$C_5H_{12} + C_2 \rightarrow$$

$$C_4H_{10} + C_2 \rightarrow$$

$$Al_2O_3 \rightarrow$$

$$Al + _l_2 \rightarrow$$

$$_{\text{N}}^{\text{Zn}(OH)_2} + _{\text{N}_2}^{\text{Al}_2(CO_3)_3} \rightarrow$$

Worksheet 4b.9 - Mixed Predictions

NAME	

Use the General Cases to predict the products of each reaction. Balance each equation when done. Identify each reaction type in the blank at the right.

General Case:

Synthesis:

 $A + B \rightarrow AB$

Decomposition:

 $AB \rightarrow A + B$

Single Replacement:

 $AX + B \rightarrow BX + A$

Double Replacement:

 $AX + BY \rightarrow BX + AY$

Combustion:

 $C_xH_y + O_2 \rightarrow CO_2 + H_2O$

REACTION:

___CuCl₂ + ___Na₃PO₄ →

 $C_{12}H_{26} + C_{2} \rightarrow$

___FeCl₃ →

 $K_2SO_4 + Li \rightarrow$

 $Na + O₂ \rightarrow$

 $_{C_3H_8} + _{O_2} \rightarrow$

___KMnO₄ + ___Li →

 $__Na_3P + __Ba(OH)_2 \rightarrow$

 $_{-}H_2O \rightarrow$

 $_$ HCl + $_$ Ca(OH)₂ \rightarrow

Worksheet 4b.10 - Mixed Predictions

NAME	

Predict the products of each reaction. Balance each equation when done. Identify each reaction type in the blank at the right.

REACTION:

Mg +O ₂	\rightarrow	

$$__Na + __O_2 \rightarrow$$

$$\underline{\hspace{1cm}} Pb(SO_4)_2 + \underline{\hspace{1cm}} Al(C_2H_3O_2)_3 \rightarrow \underline{\hspace{1cm}}$$

$$C_4H_{10} + C_2 \rightarrow$$

$$_H_3PO_4$$
 + $_MgCO_3$ →

$$_{--}$$
PtO₂ + $_{--}$ H₂ \rightarrow

$$__MgSO_4·7H_2O$$
 →

Worksheet 4b.11 - Mixed Predictions

NAME	

Predict the products of each reaction. Balance each equation when done. Identify each reaction type in the blank at the right.

REACTION:

$__Sr + __O_2 \rightarrow$	
Na +H₂O →	
Zn +HCl →	
ICI →	
Fe(OH) ₃ +H ₂ SO ₄ →	
$C_6H_{14} + C_0 \rightarrow$	
Au(OH) ₃ +Na ₂ CO ₃ →	
SrCl₂ +NaOH →	
OCl ₂ ->	
AgNO ₃ +H ₂ SO ₄ →	
$_{-}$ Zn + $_{-}$ O ₂ \rightarrow	
Mg(OH) ₂ +NaF →	
$_{C_{30}H_{62}} + _{O_{2}} \rightarrow$	
$\Mg(NO_3)_2 + \H_2O \rightarrow$	
$\Au_2S_3 \rightarrow$	
$_{Ti}(MnO_4)_4 +Fe_2O_3 \rightarrow$	
$\MnF_2 + \O_2 \rightarrow$	
$CO_{2} \rightarrow$	