Practice Problems (Chapter 5): Balancing and Reactions

CHEM 30A

I suggest that you complete these practice problems in **pencil** because you may need to erase and change coefficients as you balance the chemical equations.

Balance the following equations (show your check), and answer the accompanying questions.

1. ___
$$SO_2 +$$
___ $O_2 \rightarrow$ ___ SO_3

What type of reaction is this? (circle one) combination, decomposition, single replacement, double replacement, combustion, acid-base

2.
$$\underline{\hspace{1cm}}$$
 Al + $\underline{\hspace{1cm}}$ MnO₂ $\xrightarrow{\Delta}$ $\underline{\hspace{1cm}}$ Mn + $\underline{\hspace{1cm}}$ Al₂O₃

What does the delta symbol (triangle) over the arrow mean?

What type of reaction is this? (circle one) combination, decomposition, single replacement, double replacement, combustion, acid-base

3.
$$\underline{\hspace{1cm}}$$
 Bi₂S₃ + $\underline{\hspace{1cm}}$ HCl \Rightarrow $\underline{\hspace{1cm}}$ BiCl₃ + $\underline{\hspace{1cm}}$ H₂S

What type of reaction is this? (circle one) combination, decomposition, single replacement, double replacement, combustion, acid-base

4.
$$\underline{\hspace{0.5cm}}$$
 PbO₂ $\xrightarrow{\Delta}$ PbO + $\underline{\hspace{0.5cm}}$ O₂

What type of reaction is this? (circle one) combination, decomposition, single replacement, double replacement, combustion, acid-base

5. ___
$$H_2SO_4 +$$
 ___ $Al(OH)_3 \rightarrow$ ___ $H_2O +$ ___ $Al_2(SO_4)_3$

What type of reaction is this? (circle one) combination, decomposition, single replacement, double replacement, combustion, acid-base

6. ___
$$C_3H_8 +$$
__ $O_2 \rightarrow$ __ $CO_2 +$ __ H_2O

What type of reaction is this? (circle one) combination, decomposition, single replacement, double replacement, combustion, acid-base

Write formula equations from the following word equations, then balance them (show your check).

7. phosphoric acid + calcium hydroxide \rightarrow calcium phosphate + water

____+___+___+___+____+____+____

8. zinc carbonate + hydrochloric acid \rightarrow zinc chloride + water + carbon dioxide

___ -__ + __ - __ - __ + __ - __ + __ - __ + __ - __ - __ + __ - ___ - __ - __ - ___ - __ - ___ - __ - ___ - __ - ___ - __ - __ - _

9. silver nitrate + aluminum chloride \rightarrow silver chloride + aluminum nitrate

10. silver oxide $\stackrel{\Delta}{\rightarrow}$ silver + oxygen

____+___

Predict the products for the following combination reactions and balance them (show your check). The product of each reaction is a charge neutral ionic compound.

- 11. ___ $Mg_{(s)} + _{--} O_{2(g)} \rightarrow$
- **12.** ___ $Al_{(s)} +$ ___ $Br_{2(l)} \rightarrow$

Predict the products for the following single replacement reactions and balance them (show your check). If no reaction occurs, write "no reaction" on the product side of the arrow.

- 13. $\underline{\hspace{1cm}}$ Cu_(s) + $\underline{\hspace{1cm}}$ FeCl_{3(aq)} \rightarrow
- **14.** ___ $Al_{(s)} +$ ___ $HBr_{(aq)} \rightarrow$
- 15. ___ $H_{2(g)} +$ ___ $Al_2O_{3(aq)} \rightarrow$
- **16.** ___ $Cl_{2(g)} +$ ___ $HBr_{(aq)} \rightarrow$
- 17. $\underline{\hspace{1cm}} I_{2(s)} + \underline{\hspace{1cm}} HCl_{(aq)} \rightarrow$

Predict the products for the following double replacement reactions and balance them (show your check). Use the solubility rules to determine if a precipitate (solid) will form. <u>Label the phase</u> of insoluble products as solid and soluble products as aqueous.

18. ___ Cu(NO₃)_{2(aq)} + ___ FeCl_{3(aq)}
$$\rightarrow$$

19. ____ Ba(C₂H₃O₂)_{2(aq)} + ____ (NH₄)₂SO_{4(aq)}
$$\rightarrow$$

20. ___ KCl_(aq) + ___ Pb(NO₃)_{2(aq)}
$$\rightarrow$$

21. ___ Na₂CO_{3(aq)} + ___ CaBr_{2(aq)}
$$\rightarrow$$

22.
$$\underline{\hspace{1cm}}$$
 CaCl_{2(aq)} + $\underline{\hspace{1cm}}$ AgNO_{3(aq)} \rightarrow

Complete the following combustion reactions (in air) and balance them (show your check).

23.
$$C_2H_{2(g)} + \underline{\hspace{1cm}}_{(g)} \rightarrow$$

Predict the products for the following acid-base neutralization reactions and balance them (show your check).

27. ___ HBr_(aq) + ___ Al(OH)_{3(s)}
$$\rightarrow$$

28. ___
$$HCl_{(aq)} +$$
___ $CaCO_{3(s)} \rightarrow$

29. ___
$$H_2SO_{4(aq)} +$$
___ $KOH_{(aq)} \rightarrow$

30. ____
$$H_3PO_{4(aq)} +$$
____ $Ba(OH)_{2(aq)} \rightarrow$